AID: an Object-Relational Schema Design-Tool

Hassan Badir', Eticnne Pichat, He Xiaojun

LIRIS Laboratory, UFR/Info, UCBL. Lyon
8 Nicl Bohr 69622, Villeurbanne, France
{hbadir) @ liris.cnrs.fr

Abstract. Schema design is a complex activity that makes use of a variely of
knowledge. It should take into account foreseen processing. Nowadays., interaction
of processing with data (static) is not taken into account by our AID tool that is
limited to offer a graphical interface to conceive in various models (UML Class
diagrams, Universal rclationship and object attributes forest). and transform the
input diagram into the two other models. This tool highlights the complementarities
of these different models, especially object attributes forest able to take into account
designer knowledge of the processing.

Keywords. Object attributes Forest, Universal relationship with inclusions, Class
diagrams, stereotype, SQL3, XML.

1 Introduction

Database design based-tools aim essentially modeling, schema conceptual design,
transforming these schemas into implementation structures, with an optimization and
querying aim. Nowadays, (Entity-relationship [6], UML diagrams [16), relational data
model, Universal relationship with inclusions [18]...), database design methods (Object-
Merise [19], UML, ...) and platforms (Super [10], Tramis [12], Power Designer [7].
ConceptBase [13], Rational Rose [17), etc.) are widely available in the computer science
community, by the way of published papers, and books or softwares. However, despite all
these various tools; actually database applications are not designed in an automatic
manner, not well documented, not well structured, and incoherent and not casy to
maintain. Numbers of models and methods are proposed to the public, but insufficient to
answer all their needs. Commercial Design tools are often suitable for a specific field and
inadequate for the others or are not well-used.

In the framework of object information systems design, the aim of this paper is to present
an advanced visual graphical environment and sufficiently rich semantically, that allows
express non-expert user needs. Conceptually, it relies on object attributes forest
constructed with an interactive help. This expressive represenitation is a set of attributes
trees where leaves refer to a tree. We then transform object attributes forest into a

484 Hassan Badir, et al.

database stereotyped UML class diagram which uses UML-DB profile [3] [15] completeq
in [4]. .)

This paper is structured as follows: section 2 discuss our work wuh respect to our globa)
project, section 3 treat general principals of the used model'ObJect Attributes Forest,
section 4 discuss the derivation of class diagrams from object attributes foresi, W,

conclude with an overview of the main contributions of this paper, followed by the future
perspectives.

2 AID Architecture

In order to achieve the expected objectives of our work, we integrate three formalisms
representing three different models of our tool called AID. AID is an edition and object,

relational, and object-relational conception-assisted platform. Its roles can be enumerated
as follows: '

| _Nurmalued Semantc Gruph]
'. Interface uETT A= ’ T
| |) QE' l—2::1
: Cs ||t [%cﬂ
1 L Qi (= |
n g . J
'(te U i. Objeci Aunbutes Farest \l
r SE 4 Interface e« -
a
¢ R -84 N TS
t)
i&}_ﬁ ' B NN
K | to
" UNIL (i} dagama
| ! Intetface |
1 !
< | ¢|¥° ,
A a
Methods of access ’
1 . — - stk o a——]
S RN S A —
> | et
[Tllnu-nl'aiu:' : AR i .“-...-.-....-....... g .

R S R A

.. -

Fig. 1. AID architecture

- -

AID: an Object-Relational Schema Design-Tool 485

- User can describe schema of his choice through on the following models (Fig. 1):
Universal relationship with inclusions (URI) [18), object attribute forest and DB
stereotyped UML classes.

- to go from a model to another by using transformation algorithms, it allow as well SQL3
description generation or XML schema,

- User can normalize; transform a representation into relationships related by inclusion
dependencies in a Normalized Semantic Graph (NSG). This normalization could be
partial, and keep unchanged some complex object structures fixed by user without any
further normalization.

- To optimize the obtained conceptual schema with respect to the foreseen processing,
introducing hence access methods, even to denormalize it.

This tool is composed of three windows or principales interfaces. Each window is
reserved for representing different formalism. It is constituted of five modules of
transformation:

- Interactive interface for specifying normalized semantic graph by applying a
normalization algorithm on a set of functional dependences, jointure composantes, and
inclusions dependences (Fig. 1)(1).

- Interactive interface to specify object attributes forest allowing describe complex data
(Fig. 1)(2).

- Interactive interface for specifying database stereotyped UML class diagrams (3).

- Transformation module of an ordered normalized semantic graph (ONSG)[14] into an
object attribute forest. The corresponding algorithm is given by [14] (Fig. 1X5).

- Transformation module (Fig. 1)(6) of object attribute forest into database stereotyped
UML class diagrams. The corresponding algorithm is described in section 4.

- Module for generating SQL3 description from a UML classes diagram (Fig. 1X7).

- Module for generating XML schema from a UML classes diagrams (Fig. 1)(8).

In this paper, we will restrict our study at the shaded part which is composed of two
interfaces ((Fig. 1)(2 and 3) and a transformation module ((Fig. 16 and 7).

3 Object Attributes Forest (OAF)

The main advantage of the relational model is its great simplicity in representing data in

the form of relation (table). In this model, the schema of a relation is composed of a sct ofy,
attributes taking values from atomic domains: it is the first normal form (INF). However

such an inherent constraint requires serious limitations in terms of modeling. In order {Omm—
overpass such a limit, a model with complex values (structured values, or complex
objects), very simple, has been introduced to propose to user a maximum of possibilitics

in designing his reality. This model uses the least set of modcling operators. It's in this
objective that has been used OAF, conceptualization of complex object [7](2).

486 Hassan Badir, et al.

3.1 Elements composition Object Attributes Forest

Elements composing Object Attributes Forest are attributes tree and reference edpe
Recall that a tree is a non-cycled oriented graph having one and only one root o

: ; ool (or no
without predecessor). Its other nodes called intermediates if they have at leag odn:
successor and leaf otherwise.

Attributes tree is a tree where each node is has a named attribute. The root name is ajsq
the tree name and will be the name of the associated class. Each intermediate node of root
is unshared and its lifetime is of the composed class. Each arc of attributes tree s:

- Univoque (total or partial): to each value of its original attribute (node) is associated a
most a value of its extremity attribute. It's represented by a simple arrow, or.

- Multivoque (total or partial): to each value of its original attribute could be associated a

set of values 10 its extremity attribute. It's represented by an arc with a double arrow in the
same direction (table. 1)

Table 1. Representation of the bows of a object of attributes forest

i | L ;
J, v l Y Y S

Univoque sct

Multivoque set
(L1)-(Ln) O.D-(lm) | (Ln)-(ln) | (O.n)-(l.n)

Reference Inclusions
(heritage) | dependences

A OAF is a set of attributes trees and reference arcs. A reference arc relates a leaf node to
an attributes tree. It indicate that each value of leaf attribute is a reference (a pointer) to at

most one instance or value of the root of the referenced attributes tree. It is represented by
discontinued fat arrow.

The naming of the attributes forest nodes should verify the following constraints:
- The name of the attributes tree should be unique among the attributes trees names.

- The node name should be unique among the nodes names of the same immediate
predecessor.

(Fig.2) represent an object attribute forest of the Olympic-Games modeling athletes,
coaches, and sportive events.

AID: an Object-Relational Schema Design-Tool 487

fxrect (mnen (vl (iniver Ll 1oy Lol

Eli..-; WEQS emme) AE Dsge | pe._

— e — i

O e e dh | 4 720 Ovee Somen {) 1ats vt G
) tong st Cuate = h T

]
[o & (it phenr § .l"
ey
-
-

® Asen? ==

‘.

& Lpvers -

1
)
i
© " Asse Nt
® Awe 10
® Mmrel H
® Awm1) ‘
® rsingt i
o Wa l
|
|

® Dag ween _Cot_Litvatnn

*

RIS TRIED A "."~‘— DB B Setifpuriaiinis B it A o oMt X o peiee .)
Fig. 2. OAF of Olympic-gamcs where for Person the sccond hey Mante FirstN Tl not displayed

In an object attribute forest, each attributes tree has a color chosen hazardly by AID or
clarified by user. This color will be inherited by UML class diagram in the transformation

phase.

3.2 Keys in a OAF

Object identifier in object data modeling is provided at the same time of the object
creation. It is not often visible to users (or applications). Object identity is insufficient. It's
important to give users the possibility 10 access objects using their contents and to avoid
double insertion (equal objects or having the same key value). The key concept is an
essential semantic concept in data modeling, introduced later by object DBMS. [5] A
complex class or attributes tree could have one or several keys. For example (Fig. 2),
Person has as keys Matricule, First-Name Second-Name BirthDate and First-Name

Second-Name Phone-Number.

488 Hassan Badir, et al.

4 Database Stercotyped UML Schema Derivation
from a Complex Tree

This section relates complex data representation and UML class diagram, which represent
the comerstone of UML method. Recall that a class diagram is composed of classes apg
relations between these classes, with their attributes and methods. We give at firs 5
algorithm for transforming object attributes forest into classes diagram, then after some

explanations about the used UML-DB profile, we explain how stereotypes are generated
from attributes tree keys.

4.1 Algorithm for transforming OAF into classes diagram
This algorithm (Algo.1) constructs persistent classes from roots and intermediate nodes of

OAF. adds to them attributes from leaves, and defines compositions from arcs and
associations from references. It highlights the recapitulated correspondences (Table 2):

Table 2 Correspondences between ares of OAF and associations of UML classes diagram
Types 'l Arcs Relations

Illimited multivoque composed " 3 - kil c’

Borned multivoque composed s ety - Rl
Univogue composed ; s vAntCamp C
Reference W . S Aur-Ref C

eference [univoque] o 23 o N

| Algorithm 1: Algorithm of transformation of a OAF in a Classes Diagram |

Input : Object Auributes Forest.
Output : DB Stereotyped UML classes Diagram.
For All each tree (of root R) do
If its class (or those of it root) R doesn't exist Then
CreateClass(R)
End If

For All Arc(S,,S.) in an order that predecessor has been
examinated do

If (S.,S.) is univoque Then
If S, is intermediate Then
CreateClass(S.,)

Compose univoquely this class to class S,
End If

AID: an Object-Relational Schema Design-Tool 489

If S, is a leaf and reference the tree S Then
If referenced class doesn't exist Then
CreateClass (S)
End If
Associate referenced class S to class S, with role S,
End If
If Se is a leaf not referenced Then

Attr(S,) = Attr(S,)uU(s,} {Associate attribute S, to
classe S,}
End If
Else
If (S,,S,) is multivoque Then
CreateClass (TasSe)
Compose multivoquely this class to classe S,
If S, is a leaf and referenced S Then
If referenced class doesn't exist Then
CreateClass (S)
End If
Associate referenced class S to classe TasS, with
role S,
End If
If S, is a leaf not referenced Then
{Associate attribute S,} to class TasSe
End If
If S, is intermediaite Then
CreateClass (TasS,)
Compose multivoquely this class to classe S,
End If
End If
End If
End If
End If

Algorithm execution applied to OAF of (table 2) gives the UML class of (Fig.3).
Therefore, the node Address, which has an entering arc (Person, Address) of labeled
multivalued NT type, generate between the two classes Person and Addz:ess the
composition arrow into TasAddress taking the +Address role TasAddress side, the
competition of the going node of reference type, generate the compositifm arrow of
Competition into TasCompetition and aggregation arrow of TasCompetition into Epreuve
having the +Competition role side Epreuve.

490 Hassan Badir, et al.

lciwee Iuman HMrem GArdrer 4 beip Landd

)% ol & @ 8 wermaem | AP Ragd Ao
g7 O T o 17 e . - - _—"'-—.__'__‘__-
) s . M | & ta) oymps Come nf:"_‘“""—___““"‘") o .
- T3 Mg ewees Oneve I .
20D g (aatupd T L
T vCwrees ! ATHLETE
LN § i oI
* Um s-e__ / Ll L o
o sreme X -—-—_____’
& iva s 1] Compoeams USTCOMPETITION i l
8 lpe~~ . 1 1 F
& Amen? LSJ : 'l'.-t\‘ .)|
8 Towrard r | TRANERT [~ 4
= ek e e SLwra 3
® assa il \ J
* Ay : i
4 Aisetd H
e Asutt \ .
* Ao e (=]
® Asve Ve —1
® barn it ; s, *Promn
i : PERTON] :
T PRIVYE
| r= . [R
S Doy Coa LA amn C law L2004 .
A e MV eRly € e NLAIIT L ﬁ_l
H e kM 1A QA gt DLVERLG
Tk LA Y | pre im0 Ak
A WVewme N Wi T s NI
[earptve RUMMID

Fig. 3. DB strercotyped classes diagram obtained from The FAO of the (Fig 2)

4.2 UML-DB profile

The profile concept is essential in model engineering. This concept is not neutral; it
descends principally from hypergenericity [9) concept. The profile concept has been
standardized in UML 1.4 in 2000 and reinforced in UML 2.0. A profile is a UML
extension that keeps intact the UML metamodel [17]. It's composed of a set of stereotypes,
of labeled values attached to these stereotypes and constraints (table 3). In the field of
databases, we have extended the UML-DB [4] profile to composed or simple candidate

keys. This profile has also icons stereotypes representing nested table, array, type and
table.

4.3 Keys processing

To transform keys of objects attributes forest into keys in classes diagram, we have used
UML-DB profile for primary, secondary, simple, and composed keys specifications. We
have used stereotypes 1o express keys in classes diagram. In the design phase, we can
associate several keys to one class, and each key can contain several attributes. One of
these keys could be specified as primary: we stereotype it as PK as we can see it in (fig 4)-

AID: an Object-Relational Schema Design-Tool 491

§tcrcptyping the others keys often called candidates, is more difficult. Each key is
fdcnuﬁed by an index that will be associated with its attributes. Thus, each candidate key
is stereotyped CK, and each one of its attributes carries on its index as showed in (fig 4).

This stereotyping generalizes that adopted by Rose [17].

- —

Presan " PERSON ')
AR 5 ‘ LI TR .'
LAY AN | 1@ e 5 gl '
/ .' II \‘ » e rO T e NN ;
. ' 4 E e “ior :
» | 4 vy 4 4- “lf ‘I
Mgt rde VAT BT Prectq LuME SR aegn ¥ R
i/ .
; Ll L ."\'."l')
Py " e ADRESST u
4 ; NATIONT =
; . S »
P v <« I i
L LT TR ST LT T et J

Fig. 4. Computing and transforming complex keys 3

The following table resumes a part of the UML-DB profile with stereotypes for Oracle9i:

structured type in SQL.1999

Stercotype Icon Description Constraint
o Allows the representation of new user | It can only be used to
<sObjeci-type>> or defined dala types. It corresponds to the | define value types

It represents a class of the database
schema that should be defined as a
table of an object type. It corresponds
to the typed table in SQL:1999

<<Object-table>> | B

A typed table implies the
definition of a structured
type. which is the type of
the table

non-indexed and

The elements of a NT

array type in SQL:1999.

<<Nested- Represents an
unbounded collection type can be of any data type
Table>> ol except another collection
type
= Represents an indexed and bounded The clements of a
<<Varray>> > | collection type. lts corresponds to the VARRAY can be of any
v data type except another

collection type

Table 3. UML-DB Profilc for Oracle9i

[Algorithm 2 Algorithm of transformation of keys

492 Hassan Badir, et al.

For All each root S, do
For All each arc (S,; S,) do
If (S,; S.,) is univogque then

If S, is leaf not refernced then

If S, 2 an Primary Key PK then
Stéréotype S, = «PK»

End If

For j = 1 to card(setofCandidatesKey) do

If S, 2 an Primary Key PK then
Stéréotype S, = Stéréotype S, + «PK»

Else
Stéréotype S, = «CK»

Contrainte S, = Contrainte S,u{j}
End If
End Por
End If
End If
End For
End Por

In an objects attributes forest, keys could be represented in the same time with PK, CK,
and index symbols. Such a representation seems to us less visval. Thus, we have adopted

the underlining like entity-association diagrams, that supposes doubling attributes
belonging to several keys.

5 Conclusions

In our paper, we have addressed quality improvement in designing complexes relational-
object database schemas and the construction of UML classes diagram from an objects
attributes forest. We have presented an algorithm for transforming a complex tree into a
UML DB stereotyped classes diagram for conceiving object-relational schema. Our
choice for using objects attributes forest as conceptual data model is justified by its
simplicity in representing complex data, and data modeling. The enrichement, by keys and
references that we have addcd, leads to a better complex data design. In other hand, we
have chosen as a final conceptual model, UML class diagram thanks to its expressive
semantic expressiveness, and its standardization, after extending it in order to support
object-relational and relational database design. We have developed an intuitive interface
for assisting design. The goal is to make the conception process very simple and very easy
for non-specialists users. Thanks to this interface, user conceive his OAF progressively.
While he refines his schema, user can eventually come back, and go in other direction.

AID: an Object-Relational Schema Design-Tool 493

Interface offers ﬂ_exibility and conviviality to express graphically trees, and inheritance
management by its references. It will be very promising to derive object-relational
schemas from relational schemas. Other possible objective is to extend our tool for
automatic transformation of relational model (Normalized Semantic Graph) into an
object-relational model (UML class diagram). Thus to improve our tool (processing,
offering a graphical query interface for precise specifications).

References

ol o

12.

13.
14.
15.
16.
17

18.
19.

Abitboul S.. Hull R.. Vianu V., Foundations of Databases, Addison-Wesley. 1995,

Abitboul 8., Hull R.. Buneman P., Suciu D., Data on the Web, Addison-Weslcy, 1999,

Ambler S., l"’crsislcncc a UI\.IL Proﬁ]c for Data Modcling, www.agiledata.org. 2002.

Budlr.!l.. Plc!ml E.. Beqqali O, Utilisation d’'UML pour concevoir unc base de données objet
ou objct-relationnellc IEEL SETIT, 2003.

Cautell R.G.G., Skeen J., The Object Database Standard. Morgan Kaufmann Publishers, 1994,
ACM Transaction.

Chen P. P.: The Entity-Relationship-Modecl-Toward a unified view of data, ACM Transaction
on Databasc System 1 (1), 1976.

DATE C.J.. An Introduction to Databasc Systems. Editions Addison Wesley, 2000.

Dellobel C. Bancilhon R., Building an Object-Oriented Database System- The story of 02,
Morgan Kaufmann Publishers, 1992.

Desftray P.. Object Enginecring. The fourth dimension. Addison Wesley 1994,

Denncbouy Y., Andersson M., Auddino A., Dupont Y., Fontana E., Gentile M., and
Spaccapictra S, SUPER: visual interfaces for object + relationship data models, Journal of
visual languages and computing, 6(1):27 -52. 1995.

Fallouh F., Données complexes ct relation Universelle avec inclusions. Une aide & la
conception A l'interrogation des bases de données, these de doctorat de Funiversité UCB Lyonl,
1994.

llick J-M. Englcbert V.. Henrard J., Roland D.. Hainaut L.-L.. The DB-Main Data-Base
Engincering CASE Tool (Version 6) - Functions Overview, Technical manual, Institut
d'Informatique, FUNDP, November 2000.

Jarke M.. Gallersd?rfer R.. Jeusfeld M.A . Staudt M., Eherer S.. ConceptBase — a deductive
object basc for meta data management. In Journal of 118, Vol. 4, No. 2. 1998

Manea A.. Towards an object Oriented Design Method. Application to Hydrological Database,
DEXA 1995: London, United Kingdom.

Marcos E.. Vcla B. and Cavero J. M., Extending UML for Database Design. Fourth
International Conference on the Unificd Modeling Language: UML 2001, Toronto. Canada.
Muller P.A.. Gaertner N.. Modélisation objet avec UML, Eyrolles, 2¢ ¢dition. 2000.

Naiburg E. J., Maksimchuk R. A., UML for Database Design, Addison-Wesley, 2001.

Pichat E.. Bodin R.. Ingénicric des données. Masson, 1990.

Rochfeld A.. Rigaux P., Traité de modélisation objet. Editions Eyrolles, 2002.

